FacultyIBiS logo

John Marko

John F. Marko

Molecular Biosciences, Physics & Astronomy
PhD, Massachusetts Institute of Technology

Email: john-marko@northwestern.edu
Phone: (847) 467-1276
Fax: (847) 467-1380
Room: Pancoe 4109


To Lab site

Research Interests

Protein-DNA interactions, and chromosome structure and dynamics

A good deal of the lab's work uses biophysical methods, with particular emphasis on micromanipulation of single DNA molecules and single chromosomes. Recent projects in the lab have included studies of the internal structure of eukaryote mitotic chromosomes, single-DNA studies of DNA-folding proteins from bacteria, studies of DNA topoisomerases, and studies of the dynamics of self-organization of chromatin using Xenopus egg extracts. The lab also carries out theoretical modeling work related to these experimental studies. Future directions for the lab include combining fluorescence microscopy and force microscopy in experiments on DNA-protein complexes and whole chromosomes, and in-vivo studies of coupling of chromosome dynamics to gene expression.

Selected Publications

The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation. Sun M, Nishino T, and Marko JF. Nucleic Acids Research. 2013 July 8;41(12):6149-6160.

ATP Hydrolysis Enhances RNA Recognition and Antiviral Signal Transduction by the Innate Immune Sensor, Laboratory of Genetics and Physiology 2 (LGP2). Bruns AM, Pollpeter D, Hadizadeh N, Myong S, Marko JF, and Horvath CM. Journal of Biological Chemistry. 2013 January 11;288(2):938-946.

Histone H1 compacts DNA under force and during chromatin assembly. Xiao B, Freedman BS, Miller KE, Heald R, and Marko JF. Molecular Biology of the Cell. 2012 December 15;23(24):4864-4871.

Range of Interaction between DNA-Bending Proteins is Controlled by the Second-Longest Correlation Length for Bending Fluctuations. Zhang H and Marko JF. Physical Review Letters. 2012 December 14;109(24):248301.

Self-organization of domain structures by DNA-loop-extruding enzymes. Alipour E and Marko JF. Nucleic Acids Research. 2012 December;40(22):11202-11212.

Variation of the folding and dynamics of the Escherichia coli chromosome with growth conditions. Hadizadeh Yazdi N, Guet CC, Johnson RC, and Marko JF. Molecular Microbiology. 2012 December;86(6):1318-1333.

Bacterial topoisomerase I and topoisomerase III relax supercoiled DNA via distinct pathways. Terekhova K, Gunn KH, Marko JF, and Mondragón A. Nucleic Acids Research. 2012 November;40(20):10432-10440.

Remote control of DNA-acting enzymes by varying the Brownian dynamics of a distant DNA end. Bai H, Kath JE, Zörgiebel FM, Sun M, Ghosh P, Hatfull GF, Grindley NDF, and Marko JF. PNAS. 2012 October 9;109(41):16546-16551.

Competition between curls and plectonemes near the buckling transition of stretched supercoiled DNA. Marko JF and Neukirch S. Physical Review E. 2012 January;85(1-1):011908.

Counting proteins bound to a single DNA molecule. Graham JS, Johnson RC, and Marko JF. Biochemical and Biophysical Research Communications. 2011 November 11;415(1):131-134.

Underwound DNA under Tension: Structure, Elasticity, and Sequence-Dependent Behaviors. Sheinin MY, Forth S, Marko JF, and Wang MD. Physical Review Letters. 2011 September 2;107(10):108102.

Force-driven unbinding of proteins HU and Fis from DNA quantified using a thermodynamic Maxwell relation. Xiao B, Zhang H, Johnson RC, and Marko JF. Nucleic Acids Research. 2011 July;39(13):5568-5577.

Nucleosome positioning in a model of active chromatin remodeling enzymes. Padinhateeri R and Marko JF. PNAS. 2011 May 10;108(19):7799-7803.

View all publications by John F. Marko listed in the National Library of Medicine (PubMed). Current and former IBiS students in blue.